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a  b  s  t  r  a  c  t

With  the advent  of  Big  Data  era has  seen  both  the  volumes  and  update  rates  of  data  increase  rapidly.
The  granular  structure  of  an information  system  is  evolving  with  time  when  redundancy  data  leaves
and  new  data  arrives.  In  order  to quickly  achieve  the rough  approximations  of dynamic  attribute  set
interval-valued  ordered  information  system  that  the  attribute  set  varies  over  time.  In  this  study,  we
proposed  two  dynamic  computing  rough  approximations  approaches  for time-evolving  information
granule  interval-valued  ordered  information  system  which  induced  by  the  deletion  or  addition  some
attributes,  respectively.  The  updating  mechanisms  enable  obtaining  additional  knowledge  from  the
varied  data  without  forgetting  the prior knowledge.  According  to these  established  computing  rules,
ystem
ough approximations
ime-evolving information granule

two  corresponding  dynamic  computing  algorithms  are  designed  and  some  examples  are  illustrated  to
explain  updating  principles  and  show  computing  process.  Furthermore,  a series  of  experiments  were
conducted  to  evaluate  the  computational  efficiency  of  the  studied  updating  mechanisms  based  on  sev-
eral  UCI  datasets.  The  experimental  results  clearly  indicate  that  these  methods  significantly  outperform
the  traditional  approaches  with  a dramatic  reduction  in  the  computational  efficiency  to  update  the rough
approximations.
. Introduction

In the past decades, the applications based on WEB  have
chieved vast development with the popularization and devel-
pment of Internet/Intranet technology. The amount of freely
vailable, user-generated data has reached an unprecedented
olume. A number of data mining and information processing
echniques have been proposed to capitalize on the opportunities
ffered by massive amount of data. The concept of Big Data, which
as first identified in a Nature article in September 2008 [1], usually

efers to massive, high-speed, and diverse information resources.

t is generated by every digital process, social media exchange and
lmost everything around us at all times, and transmitted by all sys-
ems like sensors and mobile devices. A data set is alterable with the
edundant information removes and new information arrives con-
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tinuously with time in real-world applications. Dynamic computing
is an efficient and rapid method for data mining in a time-evolving
database, which enables acquiring additional knowledge from new
data without forgetting prior knowledge [25].

Rough set theory (RST), which was first proposed by Pawlak
in 1980s [28], is a valid mathematical tool for knowledge dis-
covery and approximate reasoning. Utilizing a known knowledge
in the base of knowledge to approximate characterize inaccurate
and indeterminate concept is the main idea of this theory [29,30].
It is built on the basis of the classification mechanism and clas-
sified by an indiscernibility relation (equivalence relation) in a
specific nonempty and finite universe [23,36]. This soft comput-
ing methodology has received great attention in recent years, and
its effectiveness has been confirmed successful applications such
as conflict analysis, pattern recognition, decision support and so on
[14,38]. Granular Computing (GrC), another novel concept of infor-
mation processing based on Zadeh’s “information granularity” (an
important component of artificial intelligence), which is a term of

theories and techniques that makes use of granules in the process
of data mining [52,53]. It identifies the essential commonalities
between the surprisingly diversified problems and technologies
used in applications, which could be cast into a unified framework
known as a granular world [54]. The outcome of GrC is achieved
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hrough the interaction of information granules and the external
orld at a granular or numeric level by collecting the necessary

nformation granules [42]. Where an information granule is a clump
f objects that drawn together by their binary relation or proximity
f functionality [31,32]. Pedrycz et al. investigated the characteriza-
ion of numeric data by using a collection of information granules,
nabling the key structure, topology and essential relationships of
ata to be described as a family of fuzzy sets [34], and formulated a
eneral information granules framework for the description of data
35].

Due to the uncertainty of human cognitive and widely random
actors exist in data where collected from practical applications. The
nterval-valued information system (IvIS) as an extended model
f single-valued information system that attribute values being

nterval-valued, which is perhaps more appropriate for describing
eal uncertainty data. It is one of the useful ways for character-
zing the values of a variable with uncertainty that utilizing the
nterval-valued specified by the properly defined lower and upper
imits of the values that this variable possibly takes [59]. In recent
ears, a series of studies have been researched in the context of
vIS based on a possible degree between two interval numbers
12,43]. Dai et al. combined this concept and an extended condi-
ional entropy to research uncertainty measurement problem in
he context of interval-valued decision information system [11].
o compare with the existing rough set models, Yamaguchi utilized
he grey system theory establish a novel rough set model for the
nformation systems that containing interval data [45]. As a coun-
erpart of the interval-number algebra, Yao detailed introduced an
nterval-set algebra for representing qualitative information [47],
nd made a comprehensive review on interval sets and interval-
et algebras [49]. The dominance-based rough set approach (DRSA)
s an another generalized model of the classical RST which may
andle information with preference-ordered attribute domain [20].
ased on DRSA, Qian defined the interval-valued ordered informa-
ion system (IvOIS) and proposed an approach of object-ranking by
hole dominance degree of each object and an attribute reduction
ethod be investigated to extract compact dominance rules [36].

In real applications, the data is generated and collected dynam-
cally in an information system, and the knowledge discovery
ased on RST need to be updated accordingly [33]. The mechanism
f dynamic updating approach is that dealing with the alterant
ata set and without re-implementing the original data mining
16,41]. It have been received much attention in past decades
nd been used to solve the issues that datasets are time evolv-
ng [2]. Since the form of data is represented as an attribute-value
able that consisting of objects (rows) and attributes (columns)
n rough set analysis [16], therefore the variation of information
ranules related to knowledge acquirement can be divided into
hree aspects and Li systematically summarized them in literature
18]. They are variation of the object set, attribute set and attribute
alues (means coarsening or refining of the attribute value), respec-
ively. Recently, some excellent incremental methods for updating
nowledge while the variation of the object set based on classical
ough set were reported in [2,61], and a lot of noticeable incre-

ental methods were studied for generalized rough set model.
or example, Liu presented an incremental approach for inducing
nowledge and learning optimization on knowledge discovery in
ynamic information systems [21,22], Chen researched an incre-
ental approach for updating rough approximations in variable

recision rough set (VPRS) while objects is dynamically alter [8],
nd the incremental algorithm for attribute reduction of VPRS also

e investigated in [5]. The incremental induction of decision rules
nd the selection of most interesting representatives based on dom-
nance relation in the final group of rules were studied by Jerzy in
3], and Greco investigated them in the context of multiple criteria
ecision analysis [13]. In addition to these, there are many research
uting 60 (2017) 18–29 19

achievements about the variation of object set [15,19,26,56,58]. On
the other hand, Chan firstly presented an incremental algorithm for
learning classification rules when an attribute set evolves over time
[4]. Luo et al. proposed an effective method of maintaining approx-
imations dynamically in set-valued ordered decision system under
the generalization of attribute set [25], and there are a large number
of researches about variation of attribute set [10,17,20,25,57,60].
Additionally, the refining or coarsening of information granule as
a special case on the variation of the attribute values was  firstly
defined in [6]. Chen conducted a series of studies that gave an incre-
mental algorithm for updating rough approximations in Pawlak
rough set model and DRSA in incomplete information systems
[7], presented matrix-based incremental algorithms for updating
decision rules [9]. These research achievements provide a abun-
dant theoretical basis for studying knowledge discovery in dynamic
datasets.

However, to the best of our knowledge, the previous researches
about dynamic computing rough approximations mainly con-
cerned in the classical information systems and some generalized
rough set models based on the expansion of attribute value set
(e.g. set-valued information system [57], interval-valued informa-
tion system [60], and hybrid information system [55]), but little
attention has been paid to dynamic computing rough approxima-
tions of the IvOIS while the information granular structure varies in
time. Since the interval-valued is more appropriate to describe the
uncertainty of data which caused by human cognitive and widely
random factors. Meanwhile, we  often encounter the scenario where
the ordering of properties of information system and consider-
ing attributes with preference-ordered domains is an important
characteristic of multi-attribute decision making problems in prac-
tice. In order to combine these two  aspects, Qian established a
rough set approach in IvOIS to study the IvIS based on dominance
relation [36]. Prior to this, we have studied the dynamic updat-
ing rough approximations in dynamic object set IvOIS [50]. But,
there is no dynamic method for computing rough approximations
of time-evolving information granule IvOIS and the approaches
for computing rough approximations in other information sys-
tems cannot be utilized directly to the IvOIS. For this reason, the
method of dynamic computing rough approximations in time-
evolving information granule IvOIS is investigated in this paper.
We discussed the principles of dynamic computing rough approx-
imations when the attribute set varies with time and designed
two dynamic computing algorithms for the variation of granular
structure based on the proposed mechanism in IvOIS. Furthermore,
the performances of proposed algorithms are evaluated on several
varieties of UCI datasets.

The remainder of this paper is organized as follows. Some neces-
sary preliminary knowledge of RST and IvOIS are simply introduced
in Section 2. In Section 3, the approaches of dynamic computing
upper and lower rough approximations in interval-valued ordered
information system when the information granule is dynamic with
time, and some examples are conducted to show the proposed
computing mechanisms. Furthermore, two  corresponding dynamic
algorithms for computing rough approximations are designed for
deleting and inserting attributes based on the proposed principles,
respectively. The performance evaluations are conducted and the
experiment results have exhibited in Section 4. Some concluding
comments are offered in Section 5.

2. Preliminaries
In this section, we  first briefly review some basic concepts of RST
[24,28,37,39,40], and the necessary knowledge of IvOIS are intro-
duced [36,44,46,48]. Throughout this paper, U is a finite non-empty
set of objects (the universe of discourse), AT is a finite non-empty
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et of attributes, V is a set of attribute values, P(U) represents the
ower set of U, RA and IND(A) are indiscernibility relation, GRA (xi) is

 basic granule with respect to RA, R�
A and R�

A are dominance relation
nd dominated relation with respect to attribute set A.

.1. Pawlak rough sets

The RST theory is built based on an information system which
s a quadruple I = (U, AT,  V, f), where U = {x1, x2, . . .,  xn}. For every
ttribute a ∈ AT,  a set of values Va is associated with the function

 : U × AT → V such that f(x, a) ⊆ Va for every a ∈ AT,  x ∈ U. For any
ttribute set A ⊆ AT,  there is an associated indiscernibility relation
A that is defined as

ND(A) = {(x, y) ∈ U × U | ∀a ∈ A, fa(x) = fa(y)} = RA.

The indiscernibility relation RA also named equivalence relation
nd divides the universe U into disjoint subsets. Such a parti-
ion is a quotient set of U, and is denoted by U/RA = {[x]RA |x ∈ U},
here [x]RA = {y ∈ U|(x, y) ∈ RA} is the equivalence class contain-

ng x with respect to RA, also called the Pawlak information granule
24,40].

In view of GrC, U/RA is a granular structure that can be rep-
esented by K(RA) = {GRA (x1), GRA (x2), . . .,  GRA (xn)}, the GRA (xi) is a
asic granule. Thus, a binary indiscernibility relation RA is regarded
s a granulation method for partitioning objects [37,39]. In partic-
lar, the finest granular structure on U is denoted as K(ı) = {{x1},
x2}, . . .,  {xn}},  and the coarsest is denoted as K(ω) = {{x1, x2, . . .,
n}}.  Based on an information system, Pawlak proposed the rough
et theory [28], for any X ∈ P(U) representing a basic concept and
n indiscernibility relation R which induced by an attribute set A
where A ⊆ AT), one can respectively characterize the upper and
ower approximations of X with respect to RA by a pair of operators

hich be defined by following ways.

R̄A(X) = {x ∈ U|[x]RA ∩ X /= ∅},
RA(X) = {x ∈ U|[x]RA ⊆ X}.

Based on these approximation operators, other rough regions
an be obtained as pos(X) = RA(X), neg(X) = ∼R̄A(X), bn(X) =
Ā(X) − RA(X) are the positive region, negative region, and bound-
ry region of X with respect to RA, respectively.

.2. Interval-valued ordered information system

An IvIS is a generalized information system that for any x ∈ U
nd a ∈ AT the f(x, a) is a interval number and denoted by

 (x, a) = [aL(x), aU(x)] = {p|aL(x) ≤ p ≤ aU(x); aL(x), aU(x) ∈ R}.

In particular, f(x, a) would degenerate into a real number if
L(x) = aU(x). Under this consideration, we regard a single-valued
nformation system as a special form of IvIS [48]. In practical
ecision-making analysis, we always consider a binary dominance
elation between objects that are possibly dominant in terms of
alue of an attribute set in an IvIS [46].

An IvIS is called IvOIS if all attributes are criterions [36], it is
ssumed that the domain of a criterion a ∈ AT is completely pre-
rdered by an outranking relation �a and x � ay means that x is
t least as good as y with respect to the criterion a. For a subset
f attribute A ⊆ AT,  we define x � ay means for any a ∈ A, x � ay. In

ther words, x is at least as good as y with respect to all attributes

n A. In the following, we introduce a dominance relation that iden-
ifies dominance classes to an IvOIS. In a given IvOIS, we say that x
ominates y with respect to A ⊆ AT if x � Ay, and denoted by xR�

A y,
hat is R�

A = {(y, x) ∈ U × U|y�Ax}. It means that if (x, y) ∈ R�
A then
uting 60 (2017) 18–29

y dominates x with respect to A. That is to say, y may  have a bet-
ter property than x with respect to A in reality. In a similar way,
the relation R�

A (called a dominated relation) can be defined as
R�
A = {(y, x) ∈ U × U|x�Ay}.

For any A ⊆ AT and A = A1 ∪ A2, if the attributes set A1 according
to increasing preference and A2 according to decreasing prefer-
ence, then the two binary relations can be defined more precisely
as follows:

R�
A = {(y, x) ∈ U × U|aL1(y) � aL1(x), aU1 (y) � aU1 (x), ∀a1 ∈ A1; aL2(y)

� aL2(x), aU2 (y) � aU2 (x), ∀a2 ∈ A2}
= {(y, x) ∈ U × U|(y, x) ∈ R�

A };
R�
A = {(y, x) ∈ U × U|aL1(y) � aL1(x), aU1 (y) � aU1 (x), ∀a1 ∈ A1;

aL2(y) � aL2(x), aU2 (y) � aU2 (x), ∀a2 ∈ A2}
= {(y, x) ∈ U × U|(y, x) ∈ R�

A }.

Let I� = (U, AT,  V, f) be an IvOIS and for any A ⊆ AT,  from the
above definitions of R�

A and R�
A , the following properties can

be easily obtained that R�
A =

⋂
a ∈ AR

�
{a} and R�

A =
⋂
a ∈ AR

�
{a}, and

they are reflexive, asymmetric and transitive. The dominance
class which induced by the dominance relation R�

A is the set
of objects dominating x, that is [x]�

RA
= {aL

i
(y) � aL

i
(x), aU

i
(y) �

aU
i

(x), ∀ai ∈ A1; aL
j
(y) � aL

j
(x), aU

j
(y) � aU

j
(x), ∀aj ∈ A2} and

the set of objects dominated by x as [x]�
RA

= {aL
i
(y) � aL

i
(x), aU

i
(y) �

aU
i

(x), ∀ai ∈ A1; aL
j
(y) � aL

j
(x), aU

j
(y) � aU

j
(x), ∀aj ∈ A2}.

Where [x]�
A describes the set of objects that may dominates x and

[x]�
A describes the set of objects that may  dominated by x in terms

of A in an IvOIS, which are called the A-dominating set and the
A-dominated set with respect to x ∈ U, respectively. There is a
significant lemma  between dominance classless with respect to
increasing preference attributes and it outlined by following way.

Lemma  2.1. [44] Let I� = (U, AT,  V, f) be an IvOIS, for any A1, A2 ⊆ AT
and x ∈ U, then [x]�

RA1∪A2
⊆ [x]�

RA1
, [x]�

RA1∪A2
⊆ [x]�

RA2
and [x]�

RA1∪A2
=

[x]�
RA1

∩ [x]�
RA2

hold.

This lemma  indicates that the more substantial attribute means
the more refined of information granule. In many real application
fields, one can also define the dominance relation on the universe
with interval values through using other ways, the more details
can be found in [44]. Furthermore, since no matter which domi-
nance relation can be obtained similar to R�

A . Therefore, we just only
adopt the dominance relation R�

A for studying IvOIS in this paper.
For simplicity and without any loss of generality we only consider
attributes with increasing preference in the following investigation.

3. Dynamic computing approximations in time-evolving
information granule IvOIS

Nowadays, data increase at an unprecedented rate that shows
the granular structure of a given information system is evolving
when the attribute set may  varies with time. The dynamic comput-
ing approximations approach is an incremental method and has
been proved as an useful technique for data mining in a dynamic
data set, which enables acquiring additional knowledge from var-
ied data without forgetting prior knowledge. In this section, we  will
research the mechanism of dynamic computing approximations

in an IvOIS with time-evolving information granule which caused
by the deletion or addition of attributes. The symbols �− and �−
represent the variation of upper and lower approximations while
attributes are deleted, �+ and �+ indicate the variation of upper
and lower approximations when attributes are added, respectively.
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Table 1
An interval-valued ordered information system.

U AST LDH ˛-HBDH CK CKMB

x1 [10, 40] [100, 240] [105, 195] [5, 195] [0, 24]
x2 [10, 30] [80, 210] [80, 180] [10, 190] [0, 24]
x3 [12, 45] [105, 248] [100, 210] [7, 203] [0, 23]
x4 [5, 30] [60, 80] [90, 160] [0, 180] [0, 10]
x5 [10, 46] [110, 246] [105, 195] [6, 198] [0, 26]
x6 [10, 30] [90, 200] [96, 206] [5, 195] [3, 24]
x [13, 60] [100, 240] [115, 200] [20,260] [5, 30]

9}.
J. Yu et al. / Applied Soft

t first, there are two significant propositions about the upper and
ower approximations in IvOIS should be described.

.1. Two  significant propositions

To characterize the relationship between the rough approxima-
ions which induced by the variation of attributes, two significant
ropositions are studied and an example is illustrated in this sub-
ection.

roposition 3.1.1. Let I� = (U, AT,  V, f) be an IvOIS, for any A1, A2 ⊆ AT
nd A1 ⊆ A2, for any X ∈ P(U), the following properties hold.

1) ¯R�
A2−A1

(X) ⊇ ¯R�
A2

(X);

2) R�
A2−A1

(X) ⊆ R�
A2

(X).

roof.

1) For any A1 ⊆ A2 ⊆ AT and x ∈ ¯R�
A2

(X), we can achieve that [x]�
RA2

∩
X /= ∅ based on the definition of upper approximation. Accord-
ing to Lemma  2.1 we can easily get that [x]�

RA2
⊆ [x]�

RA2−A1
, so

[x]�
RA2−A1

∩ X /= ∅ that means x ∈ ¯R�
A2−A1

(X). Therefore, we can

obtain ¯R�
A2−A1

(X) ⊇ ¯R�
A2

(X).

2) For any x ∈ R�
A2−A1

(X), according to the definition of lower

approximation we can get that [x]�
RA2−A1

⊆ X . Furthermore, we

can get [x]�
RA2

⊆ [x]�
RA2−A1

, so we can obtain that [x]�
RA2

⊆ X ,

namely, x ∈ R�
A2

(X). Thus, the proposition R�
A2−A1

(X) ⊆ R�
A2

(X)

is proved.

Thus, the proof is finished. �

roposition 3.1.2. Let I� = (U, AT,  V, f) be an IvOIS, for any A1, A2 ⊆ AT
nd for any X ∈ P(U), the following properties hold.

1) ¯R�
A1

(X) ∩ ¯R�
A2

(X) ⊇ ¯R�
A1∪A2

(X);

2) R�
A1

(X) ∪ R�
A2

(X) ⊆ R�
A1∪A2

(X).

roof.

1) According to the definition of the upper approximation, one
can achieve that for any x ∈ ¯R�

A1∪A2
(X) have [x]�

RA1∪A2
∩ X /= ∅.

Furthermore, one can get that [x]�
RA1

∩ X /= ∅ and [x]�
RA2

∩ X /= ∅
based on Lemma 2.1. That means the object x belong to the
two upper approximations, namely, x ∈ ¯R�

A1
(X) and x ∈ ¯R�

A2
(X).

That is x ∈ ¯R�
A1

(X) ∩ ¯R�
A2

(X), to summarize, we  have ¯R�
A1∪A2

(X) ⊆
¯R�
A1

(X) ∩ ¯R�
A2

(X).

2) For any x ∈ R�
A1

(X) ∪ R�
A2

(X), we can obtain that x ∈ R�
A1

(X) ∨
x ∈ R�

A2
(X). According to the definition of lower approxima-

tion, one can get that [x]�
RA1

⊆ X ∨ [x]�
RA2

⊆ X . Then, we can know

that [x]�
RA1∪A2

⊆ X , that is, x ∈ R�
A1∪A2

(X). To sum up the above

arguments, we can achieve that R�
A1

(X) ∪ R�
A2

(X) ⊆ R�
A1∪A2

(X).
Thus, the proof is accomplished.�
In order to clearly show the propositions and demonstrate the

echanism of dynamic computing approximations in IvOIS with
ime-evolving information granule which induced by the variation
7

x8 [10, 50] [120, 260] [115, 210] [8, 196] [5, 28]
x9 [16, 80] [140, 260] [102, 300] [40, 320] [10, 60]
x10 [8, 32] [60, 196] [80, 178] [6, 160] [2, 20]

of attribute set. We  illustrated an example and the data is modified
from our prior study [51].

Example 3.1. An IvOIS is presented in Table 1. It is a case of the
diagnosis of myocardial infarction, where U = {x1, x2, . . .,  x10} repre-
sentatives of ten patients and AT = {a1, a2, . . .,  a5} representatives of
several enzymes related to the diagnosis of myocardial infarction.
Where a1 represents aspartate amino transferase(AST), a2 repre-
sents Lactate dehydrogenase(LDH) and isoenzyme, a3 represents
Alfa hydroxybutyrate dehydrogenase(˛−HBDH), a4 represents Cre-
atine Kinase(CK), a5 represents Creatine Kinase isoenzymes(CKMB)
and the measure units are �g/L.

In this example, we  compute the rough approximations
based on the approach of reference [36]. First, we cal-
culate the classification which induced by the dominance
relation R�

AT are [x1]�
RAT

= {x1, x5, x7, x8}, [x2]�
RAT

= {x2, x7, x9},
[x3]�

RAT
= {x3, x9}, [x4]�

RAT
= {x1, x3, x4, x5, x6, x7, x8, x9}, [x5]�

RAT
=

{x5}, [x6]�
RAT

= {x6, x8, x9}, [x7]�
RAT

= {x7}, [x8]�
RAT

= {x8}, [x9]�
RAT

=
{x9}, [x10]�

RAT
= {x7, x8, x9, x10}, respectively. The calculation results

indicate that dominance classes in U/R�
AT do not constitute a par-

tition of U in general, but constitute a covering of U. Let X = {x1, x3,
x5, x7, x9} be a concept set, we  can compute the approximations as
follows

¯R�
AT (X) = {x1, x2, x3, x4, x5, x6, x7, x9, x10} and R�

AT (X) = {x3, x5, x7, x

So the boundary of X with respect to R�
AT is BnAT(X) = {x1, x2, x4, x6,

x10}. Let A1 = {AST, LDH} and A2 = {  ̨ − HBDH, CK, CKMB}  (it means
AT = A1 ∪ A2) then we can compute the followed results.

The covering of U with regard to R�
A1

are [x1]�
RA1

=
{x1, x3, x5, x7, x8, x9}, [x2]�

RA1
= {x1, x2, x3, x5, x7, x9},

[x3]�
RA1

= {x3, x9}, [x4]�
RA1

= U, [x5]�
RA1

= {x5, x8, x9}, [x6]�
RA1

=
{x1, x3, x5, x6, x7, x8, x9}, [x7]�

RA1
= {x7, x9}, [x8]�

RA1
= {x8, x9},

[x9]�
RA1

= {x9}, [x10]�
RA1

= {x1, x3, x5, x7, x8, x9, x10}, then the upper

and lower approximations of X with respect to R�
A1

are computed
as follows.

¯R�
A1

(X) = U and R�
A1

(X) = {x3, x7, x9}.

The covering of U with respect to R�
A2

can be achieved as

follows [x1]�
RA2

= {x1, x5, x7, x8}, [x2]�
RA2

= {x2, x7, x9}, [x3]�
RA2

=
{x3, x9}, [x4]�

RA2
= {x1, x3, x4, x5, x6, x7, x8, x9}, [x5]�

RA2
= {x5, x7},

[x6]�
RA2

= {x5, x6, x8, x9}, [x7]�
RA2

= {x7}, [x8]�
RA2

= {x8}, [x9]�
RA2

= {x9},
�
[x10]RA2

= {x7, x8, x9, x10}, based on the definitions of approxima-

tions we  can obtain follows.

¯R�
A2

(X) = {x1, x2, x3, x4, x5, x6, x7, x9, x10} and R�
A2

(X) = {x3, x5, x7, x9}.
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Fig. 1. The variation of upper approximation when deleting an attribute set. (For interpretation of the references to color in the text, the reader is referred to the web  version
of  this article.)
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Fig. 2. The variation of lower appro

According to the calculation results one can get that ¯R�
AT−A1

(X) ⊇
�̄
AT (X), R�

AT−A1
(X) ⊆ R�

AT (X), ¯R�
A1

(X) ∩ ¯R�
A2

(X) ⊇ ¯R�
AT (X) and R�

A1
(X) ∪

�
A2

(X) ⊆ R�
AT (X), respectively. They are in agreement with Lemma

.1, Proposition 3.1.1 and Proposition 3.1.2. In the following, we
ill study the approaches of updating upper and lower approx-

mations in IvOIS with time-evolving information granule which
nduced by the variation of attribute set and the object set remains
onstant. For brevity and clear, we assume the process of updating
pproximation have two stages, namely, from time t to time t + 1. By
onsidering an attribute set may  enter into or get out of the given
nformation system at time t + 1 and we denote a dynamic IvOIS at
ime t as I� = (U, AT,  V, f), and at time t + 1 the original information
ystem be changed into (I�)′ = (U, AT′, V, f) with respect to insertion
r deletion of some attributes.

.2. Deletion of some attributes

In this subsection, we will investigate the approaches of com-
uting upper and lower approximations when the deletion of some
ttributes (namely a attribute set P) from the original IvIOS that
eans AT′ = AT − P.

roposition 3.2.1. Let I� = (U, AT,  V, f) be an IvOIS, for any X ∈ P(U),
he upper and lower approximations of X after deleting an attribute set

 can be updated as follows:

1) ¯R�
AT−P(X) = ¯R�

AT (X) ∪ �−, where �− = {x ∈ (U −

¯R�

AT (X))|[x]�
RAT−P

∩ X /= ∅};
2) R�

AT−P(X) = R�
AT (X) − �−, where �− = {x ∈ R�

AT (X)|[x]�
RAT−P

�  X}.

roof.
ion when deleting an attribute set.

(1) According to Proposition 3.1.1, one can get that ¯R�
AT (X) ⊆

¯R�
AT−P(X) that means there is a set �− such that ¯R�

AT−P(X) =
¯R�
AT (X) ∪ �−. Furthermore we can obtain the set �− is the union

set which the elements not belong to ¯R�
AT (X) before deleting but

belong to ¯R�
AT−P(X) after deleting attributes. That means the x ∈

�− should be satisfied x ∈ (U − ¯R�
AT (X)) and after deleting have

[x]�
RAT−P

∩ X /= ∅, namely, the �− = {x ∈ (U − ¯R�
AT (X))|[x]�

RAT−P
∩

X /= ∅}.  To more intuitive and concise display the approach of
updating upper approximation, Fig. 1 is utilized to show the
mechanism of dynamic computing upper approximation when
an attribute set is deleted. In Fig. 1, the (I) and (II) indicate the
upper approximation before and after deleting attributes. The
red small block of (III) means that should be added parts and the
whole (III) is the new upper approximation. It indicates that the
upper approximation increase with the deletion of attributes.
There should be noted that in order to let the figures looks
simple and clear, we utilize a partition replace a covering of
universe to show the process of variation in this investigation.

(2) Based on the definition of upper approximation and Proposi-
tion 3.1.1 (2), we know R�

AT−P(X) ⊆ R�
AT (X). Similar to the (1)

there is a set �− such that R�
AT−P(X) = R�

AT (X) − �−. That means

there are some elements should be deleted from the R�
AT (X)

after deleting some attributes P namely the x in �− are come
from R�

AT (X) and there are not the lower approximations any
more that means [x]�
RAT−P

�  X . So, we can get that the �− = {x ∈
R�
AT (X)|[x]�

RAT−P
�  X}. Corresponding to Fig. 1, the mechanism

of dynamic computing lower approximation when deleting an
attribute set as shown in Fig. 2. The (I) and (II) of Fig. 2 rep-
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resent the lower approximations of X with respect to AT and
AT − P, respectively. It indicates that the lower approximation
decrease with the deletion of attributes.

Thus, the proof is fulfilled.�
According to the researched mechanism of updating rough

pproximations when some attributes be deleted in an IvOIS, a
elated dynamic algorithm for updating rough approximations is
esigned as shown in Algorithm 1.

lgorithm 1. A dynamic algorithm for updating approximations
n an IvOIS when some attributes are deleted

To illustrate the proposed propositions, we compute the upper
nd lower approximations of X by the classical rule and investi-
ated method in this paper when deletion of an attribute set P,
espectively.

xample 3.2. (Continued from Example 3.1) We  randomly sam-
led P = {a1, a4} then AT′ = {a2, a3, a5}, and the concept set X
hould be maintained that X = {x1, x3, x5, x7, x9}. At first we
alculate the approximations of X with respect to R�

AT ′ by the

efinition approach and the results are represented as ¯R�
AT ′(X) =

x1, x2, x3, x4, x5, x6, x7, x9, x10} and R�
AT ′(X) = {x7, x9}, respectively.

Based on Proposition 3.2.1, we compute the rough approxi-
ations in an IvOIS when some attributes are deleted and the

omputing process have been given in a step-by-step manner in
ccordance with Proposition 3.2.1 and Algorithm 1.

First of all, initialization of the varied set that let �− =∅, �− =∅
nd AT′ = AT − P.
Then, we compute the dominance class for each
 ∈ U with respect to AT′ are [x1]�

RAT ′
= {x1, x5, x7, x8},

x2]�
RAT ′

= {x1, x2, x5, x7, x8, x9}, [x3]�
RAT ′

= {x3, x8, x9}, [x4]�
RAT ′

=
x1, x3, x4, x5, x6, x7, x8, x9}, [x5]�

RAT ′
= {x5, x7}, [x6]�

RAT ′
=

uting 60 (2017) 18–29 23

{x6, x8, x9}, [x7]�
RAT ′

= {x7}, [x8]�
RAT ′

= {x8}, [x9]�
RAT ′

= {x9},
[x10]�

RAT ′
= {x6, x7, x8, x9, x10}. So, we can get that U −

¯R�
AT (X) = {x8} and [x8]�

RAT ′
= {x8} ∩ X = ∅. That we  can obtain

that the �− =∅ and ¯R�
AT ′(X) = ¯R�

AT (X) ∪ �− = ¯R�
AT (X)  ∪ ∅ =

{x1, x2, x3, x4, x5, x6, x7, x9, x10} based on Proposition 3.2.1(1).
On the other hand, for any x ∈ R�

AT (X) = {x3, x5, x7, x9}, we

can achieve that [x3]�
RAT ′

�  X , [x5]�
RAT ′

�  X , [x7]�
RAT ′

⊆ X , [x9]�
RAT ′

⊆ X .
Based on Proposition 3.2.1(2), we can get that the �− = {x3, x5} and
R�
AT ′(X) = R�

AT (X) − �− = R�
AT (X) − {x3, x5} = {x7, x9}.

To summarize, according to Algorithm 1 the rough approxima-
tions of X with respect to the new attribute set AT′ are listed as
follows.

¯R�
AT ′(X) = {x1, x2, x3, x4, x5, x6, x7, x9, x10},
R�
AT ′(X) = {x7, x9}.

It is obvious that the results that calculated by these two
approaches are identical. However, the computational efficiency of
the two methods may  be different. So, we will intensive research
the computational efficiency of these two  mechanism that based
on several UCI datasets in experimental evaluation.

3.3. Addition of some attributes
The methods of dynamic updating upper and lower approxima-
tions when inserting some attributes into the given IvIOS (that is
AT′ = AT ∪ Q) will be researched in this subsection.
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roposition 3.3.1. Let I� = (U, AT,  V, f) be an IvOIS, for any X ∈ P(U),
he upper and lower approximations of X after the addition of a
ttribute set Q can be updated by the following way.

1) ¯R�
AT∪Q (X) = ( ¯R�

AT (X) ∩ R̄�
Q (X)) − �+, where �+ = {x ∈ ( ¯R�

AT (X) ∩
R̄�
Q (X) − X)|[x]�

RAT∪Q
∩ X = ∅};

2) R�
AT∪Q (X) = R�

AT (X) ∪ R�
Q (X) ∪ �+, where �+ = {x ∈ (X −

R�
AT (X)) ∩ (X − R�

Q (X)) | [x]�
RAT∪Q

⊆ X}.

roof.

1) According to Proposition 3.1.2(1), one can easily get that
¯R�
AT∪Q (X) ⊆ ¯R�

AT (X) ∩ R̄�
Q (X). It means that there exists a set �+

such that ¯R�
AT∪Q (X) = ¯R�

AT (X) ∩ R̄�
Q (X) − �+. And based on the

definition of upper approximation we can obtain that the
X ∈ ¯R�

AT (X) and X ∈ R̄�
Q (X), so the elements x ∈ �+ are from

the ¯R�
AT (X) ∩ R̄�

Q (X) − X and should be satisfied [x]�
RAT∪Q

∩ X =
∅. Thus, �+ = {x ∈ ( ¯R�

AT (X) ∩ R̄�
Q (X) − X)|[x]�

RAT∪Q
∩ X = ∅}.  The

variation process of the upper approximation which induced
by inserting some attributes is shown in Fig. 3. The (I) and (II)

indicate the upper approximation before and after insertion
attributes, respectively. The red small block means that should
be deleted parts and the remainder is the new upper approxi-

mation. The (III) of Fig. 3 indicates that the upper approximation
decrease with the insertion of attributes.

1) Based on the definition of lower approximation and Proposition
3.1.2, we can get that R�

AT (X) ∪ R�
Q (X) ⊆ R�

AT∪Q (X) ⊆ X . We  can
uting 60 (2017) 18–29

assume that there exists a set �+ such that R�
AT∪Q (X) = R�

AT (X) ∪
R�
Q (X) ∪ �+. Furthermore, the elements of �+ are come from

X − R�
AT (X) and X − R�

Q (X), and should satisfy the definition of

lower approximations that [x]�
RAT∪Q

⊆ X}. Hence, we can obtain

that �+ = {x ∈ (X − R�
AT (X)) ∩ (X − R�

Q (X))|[x]�
RAT∪Q

⊆ X}. Fig. 4

shows the variation process of the lower approximation with
respect to adding an attribute set. The (I) and (II) represent the
lower approximation of X with regard to AT and AT ∪ Q, respec-
tively. The red small block of (III) means the parts be added into
lower approximation while insertion of some attributes. It indi-
cates that the lower approximation increase with the insertion
of attributes.

Thus, the proof is fulfilled.�
Algorithm 2 is an algorithm of computing rough approximations

with the addition of attributes and it is designed based on Proposi-
tion 3.3.1. It will be used to compare the proposed method and the
traditional approach in the aspect of computational efficiency.

Algorithm 2. An dynamic algorithm for updating approximations
in an IvOIS when some attributes are inserted

Example 3.3. (Continued from Example 3.1) Let Q = {a6, a7}
is an attribute set that will be inserted to I� and the charac-
teristics as shown in Table 2. The a6 and a7 represent Cardiac
Troponin I(cTnI) and Myoglobin(MYO), respectively. Based on the

definitions of rough approximations, we can compute the upper
and lower approximations of X with respect to AT′ = AT ∪ Q and
the results are ¯R�

AT ′(X) = {x1, x2, x3, x4, x5, x7, x9, x10} and R�
AT ′(X) =

{x1, x3, x5, x7, x9}, respectively.
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Fig. 3. The variation of upper approximations when adding an attribute set. (For interpretation of the references to color in the text, the reader is referred to the web version
of  this article.)

Fig. 4. The variation of lower approximations when adding an attribute set. (For interpret
of  this article.)

Table 2
The attribute set Q be added into I� .

U cTnI MYO

x1 [0.12, 0.38] [23, 58]
x2 [0.09, 0.45] [21, 63]
x3 [0.11, 0.43] [28, 58]
x4 [0.10, 0.42] [22, 57]
x5 [0.12, 0.38] [23, 58]
x6 [0.14, 0.39] [35, 65]
x7 [0.11, 0.43] [28, 58]
x8 [0.13, 0.43] [21, 63]
x9 [0.25, 0.51] [34, 65]
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x10 [0.12, 0.38] [23, 58]

Based on Proposition 3.3.1, we compute the rough approx-
mations in an IvOIS when some attributes are added and the
omputing process have been given in a step-by-step manner in
ccordance with Proposition 3.3.1 and Algorithm 2.

At first, initialization of the varied set that let �+ =∅, �+ =∅ and
T′ = AT ∪ Q.

Then, we compute the covering of U with respect to the
dded attribute set Q, they are [x1]�

RQ
= {x1, x5, x6, x9, x10},

x2]�
RQ

= {x2, x9}, [x3]�
RQ

= {x3, x7, x9}, [x4]�
RQ

= {x3, x4, x7, x9},
x5]�

RQ
= {x1, x5, x6, x9, x10}, [x6]�

RQ
= {x6}, [x7]�

RQ
= {x3, x7, x9},

x8]�
RQ

= {x8, x9}, [x9]�
RQ

= {x9}, [x10]�
RQ

= {x1, x5, x6, x9, x10}. So,

e can get that the approximations of X with regard to R�
Q

ased on the definitions of rough approximations, and the rough

pproximations are R̄�

Q (X) = {x1, x2, x3, x4, x5, x7, x8, x9, x10} and
�
Q (X) = {x3, x7, x9}.
ation of the references to color in the text, the reader is referred to the web version

In addition, we can achieve that the covering of U with respect
to AT′ are [x1]�

RAT ′
= {x1, x5}, [x2]�

RAT ′
= {x2, x9}, [x3]�

RAT ′
= {x3, x9},

[x4]�
RAT ′

= {x3, x4, x7, x9}, [x5]�
RAT ′

= {x5}, [x6]�
RAT ′

= {x6}, [x7]�
RAT ′

=
{x7}, [x8]�

RAT ′
= {x8}, [x9]�

RAT ′
= {x9}, [x10]�

RAT ′
= {x9, x10} based on

Lemma  2.1.
Furthermore, according to Example 3.1 and Propo-

sition 3.3.1(1), we  can get that ¯R�
AT (X) ∩ R̄�

Q (X) − X =
{x1, x2, x3, x4, x5, x7, x9, x10} − {x1, x3, x5, x7, x9} = {x2, x4, x10},
and because [x2]�

RAT ′
∩ X = {x9}, [x4]�

RAT ′
∩ X = {x3, x7, x9},

[x10]�
RAT ′

∩ X = {x9}. So, the �+ =∅. That means that ¯R�
AT ′(X) =

( ¯R�
AT (X) ∩ R̄�

Q (X)) − �+ = {x1, x2, x3, x4, x5, x7, x9, x10} − ∅ = {x1, x2,
x3, x4, x5, x7, x9, x10}.

On the other hand, we  can compute (X − ¯R�
AT (X)) ∩ (X − R̄�

Q (X)) =
(X − {x3, x5, x7, x9}) ∩ (X − {x3, x7, x9}) = {x1} ∩ {x1, x5} = {x1}, and
[x1]�

AT ′ = {x1, x5} ⊆ X based on step 11 of Algorithm 2. So, the
�+ = {x1}. According to Proposition 3.3.1(2), we can obtain
that R�

AT ′(X) = R�
AT (X) ∪ R�

Q (X) ∪ �+ = {x3, x5, x7, x9} ∪ {x3, x7, x9} ∪
{x1} = {x1, x3, x5, x7, x9}.

To sum up the above calculated results, we can obtain that the
rough approximations of X with respect to AT′ after inserting an
attribute set Q and they are listed as follows.

¯R�
AT ′(X) = {x1, x2, x3, x4, x5, x7, x9, x10},
R�
AT ′(X) = {x1, x3, x5, x7, x9}.
It is easy to see that the achievements of the two methods are
the same. But there may  be exist differences in the computational
efficiency between the two  approaches. In order to test the effect



26 J. Yu et al. / Applied Soft Comp

Table 3
Experiment datasets.

No. Data set name Abbreviation Objects Attributes

1 Energy efficiency EE 768 8
2  Airfoil self-noise AS 1503 6
3  Wine quality-red WQ-r 1599 11
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4  Wine quality-white WQ-w 4898 11
5  Letter recognition LR 8084 16
6  Spoken Arabic digit SAD 8800 13

f the proposed updating mechanism, some pertinent experiments
re designed in the next section.

. Experiment evaluations

To evaluate the performance of the proposed dynamic approach,
e conduct a series of experiments to compare the computational

fficiency between the classical method and the proposed approach
or computing approximations based on serval standard datasets
rom [27], which named “Energy efficiency”, “Airfoil Self-Noise”,
Wine Quality-red”, “Wine Quality-white”, “Letter Recognition”,
Spoken Arabic Digit” and the characteristics of the datasets are
ummarized in Table 3. It should be noted that any interval-valued
atasets are suitable for validating the dynamic computing rough
pproximation approach if the cardinality of attributes are bigger
han 1. In our experimental studies, to eliminate the uncertainty
hat caused by datasets and provide sufficient evidence to evalu-
te the performance of the proposed dynamic approach, we select
ix UCI datasets which include different cardinality of objects and
ttributes. The computing program of experiment is running on a
ersonal computer with CPU is i3-370 2.40 GHz, Windows 7(32-
it) and the program are coded by C language and platform is VC++
.0.

There should be noted that the attributes characteristics of the
ix datasets in Table 3 are real number. To carry out the exper-
ment, we construct the interval-valued information tables by
tilizing multiply error precision ˛, namely, the attribute value
f xi ∈ U with respect to aj ∈ AT is v(xi,aj), we can let it express as
(1 − ˛) × V(xi,aj), (1 + ˛) × V(xi,aj)]. In this paper, we set the error
recision  ̨ = 0.05, this construction method can refer to our prior
tudy [50]. In the following experiments, to ensure the sufficiency
nd effectiveness of the experiment, we repeat 5 times for each
ub-experiment and take the arithmetic mean of the 5 calculation
esults as the final result to remove the uncertainty of computer.
he experimental results are the computational time that spent on
he process of obtaining the upper and lower approximation sets
n the new system. Without loss of generality, we  randomly take a
et as the concept set X and the attribute set should be deleted or
dded is variable in different rates.

.1. Experiments of deleting attributes

In this subsection, the experiments of deleting attributes will
e conducted based on Proposition 3.2.1 and Algorithm 1. We
andomly take a object set X ∈ P(U) as the concept set and the
ardinality of the selected set is |X| = 30 % × |U|, set the all attributes
f the given IvOIS as the initial value and delete a proportion of the
ttributes in each experiment, the rate is from 5% to 50% of |AT| and
he size of increase step is 5%. It should be noted that the attributes
ill be removed are same for two computational methods in one
xperiment. The number of the deleted attributes may  be a deci-
al, so the Integer-valued function is used into our experiments.

or example, the 5% attributes of the AS that 5 % × |AT| = 5 % ×6 = 0.3
ut the value of Integer-valued function is 1. The Integer-valued
unction is usually expressed as [5 % × |AT|] or INT(5 % × |AT|) and
uting 60 (2017) 18–29

this way  will be utilized into the throughout of these experiments.
According to these setting of experiments and the designed two
dynamic algorithms, we  can utilize the proposed updating mech-
anism to get the results as shown in Table 4, the unit of the
experimental result is seconds(s).

According to these experimental results, we can achieve that the
proposed updating rough approximations approach is more effec-
tive than the traditional method in the aspect of computational
efficiency when some attributes be deleted. In order to compare
the differences between the two  methods in terms of computa-
tional efficiency, we  draw two trend lines to show the changes of
them based on the achievements in Table 4.

The Fig. 5 consists of 6 subgraphs, they correspond to the data
where from the Table 4. In each sub-figure (I)-(VI) of Fig. 5, the
x−coordinate pertains to the ratio of the numbers of the deleted
attributes and original data, while the y−coordinate concerns
the computational time. The blue and green line mean the com-
putational efficiency of proposed way and traditional approach,
respectively. From the Fig. 5, we  can know that the computational
time of Algorithm 1 and the traditional method are monotone. The
computational time of dynamic approach rises monotonically with
the increasing number of deleted attributes and the increasing car-
dinality of attribute set. On the other hand, the computational time
of traditional method decreases monotonically with the increas-
ing number of deleted attributes and the increasing cardinality
of attribute set. It is clear that the performance of Algorithm 1 is
influenced by the numbers of delated attributes for any dataset.
From the sub-figure (I) and (II), we can get that the cardinality of
the experimental attribute set influences the performance of Algo-
rithm 1 on one data set when ratio of deleted are same. It implies
that the size of a dataset is one of factors influencing the perfor-
mance of Algorithm 1. Furthermore, it is obviously that all of these
figures indicate that the dynamic approach more effective. With
more and more attributes are changed, the advantages of the pro-
posed method may  become smaller. There are still advantages in
terms of computational efficiency even if the varied attribute set is
bigger than the remainder attribute set. However, it is also should
be noted that we may  consider other more effective methods when
the varied attribute set is far greater than the set of attributes of the
original data. To summarize, the approach of dynamic computing
rough approximations is more effective than the classical method
in the viewpoint of computational time when deletion of attributes.

4.2. Experiments of adding attributes

The experiments of adding some new attributes will de carried
out based on Proposition 3.3.1 and Algorithm 2 in this subsection.
Similar to the previous experiments, we  randomly take a object set
X ∈ P(U) as the concept set and the cardinality of the selected set
is |X| = 30 % × |U|, take the 60% of the original attributes as the ini-
tial value of the experiment and the remainder attributes as the
test set. The experiments is divided into 10 times, different rates
attributes are inserted and the proportion is from 10% to 100% of
the test set that means the size of the increase step is 10%. Based
on these requirements and the researched mechanism of updat-
ing approximations, the results of this experiment as listed in the
Table 5.

Table 5 shows the computation time of updating rough
approximations when some attributes are added. Similar to the
experiments of deleting some attributes from I�, we also adopt
such schemes to compare the performance of algorithms on the

case of inserting the attributes into the I . More detailed change
trend lines of these two approaches with the increasing ratio of
datasets are given in Fig. 6.

In each sub-figure (I)–(VI) of Fig. 6, the x-coordinate pertains
to the ratio of the numbers of the inserted attributes and test
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Table  4
A comparison of definition and dynamic approach versus different updating rates when deleting attributes.

Del. (%) EE AS WQ-r WQ-w LR SAD

Def. Dyn. Def. Dyn. Def. Dyn. Def. Dyn. Def. Dyn. Def. Dyn.

5% 0.087 0.012 0.223 0.022 0.571 0.096 4.671 0.709 24.725 2.452 22.634 2.195
10%  0.084 0.013 0.240 0.027 0.519 0.096 4.233 0.717 23.084 2.457 20.815 2.541
15%  0.073 0.018 0.220 0.025 0.510 0.101 4.215 0.710 21.196 2.842 20.809 2.539
20%  0.072 0.017 0.200 0.029 0.448 0.114 3.809 0.809 19.649 3.185 19.113 2.898
25%  0.073 0.018 0.192 0.038 0.466 0.110 3.781 0.813 19.642 3.494 17.005 3.247
30%  0.063 0.022 0.194 0.039 0.393 0.130 3.348 0.921 18.121 3.810 17.131 3.242
35%  0.063 0.023 0.156 0.037 0.384 0.135 3.367 0.929 16.588 3.798 15.291 3.669
40%  0.054 0.026 0.161 0.050 0.339 0.154 2.968 1.034 14.911 4.107 13.533 4.005
45%  0.054 0.027 0.158 0.052 0.352 0.143 2.961 1.040 12.978 4.487 13.515 4.007
50%  0.055 0.026 0.168 0.054 0.339 0.168 2.994 1.154 12.981 4.814 11.857 4.372

Fig. 5. A comparison of definition and dynamic approach versus different updating rates when deleting attributes. (For interpretation of the references to color in the text,
the  reader is referred to the web version of this article.)

Table 5
A comparison of definition and dynamic approach versus different updating rates when adding attributes.

Del.(%) EE AS WQ-r WQ-w LR SAD

Def. Dyn. Def. Dyn. Def. Dyn. Def. Dyn. Def. Dyn. Def. Dyn.

10% 0.060 0.014 0.195 0.045 0.402 0.101 3.600 0.895 16.452 4.209 15.523 3.925
20%  0.061 0.015 0.196 0.046 0.387 0.095 3.610 0.899 17.948 4.612 17.309 4.406
30%  0.072 0.018 0.201 0.047 0.451 0.113 4.101 1.031 19.506 5.026 17.243 4.389
40%  0.071 0.017 0.223 0.054 0.448 0.112 4.084 1.024 19.340 4.985 19.231 4.919
50%  0.074 0.018 0.232 0.056 0.510 0.129 4.658 1.179 21.206 5.481 19.272 4.928
60%  0.086 0.021 0.229 0.055 0.514 0.130 4.730 1.193 22.930 5.941 21.006 5.392

.147 

.146 

.166 

.167 

d
T
i
b
w
(

70%  0.083 0.020 0.272 0.066 0.579 0
80%  0.091 0.023 0.269 0.066 0.572 0
90%  0.089 0.022 0.273 0.067 0.649 0
100%  0.091 0.023 0.283 0.068 0.653 0

ata, while the y-coordinate concerns the computational time.

he tendency chart is drawn from the data in table t6. It is sim-

lar to the deletion of attributes in the previous subsection. The
lue and green line mean the computational efficiency of proposed
ay and traditional approach, respectively. From the sub-figure

I) to sub-figure (VI) of Fig. 6, we can achieve that the computa-
5.283 1.345 22.820 5.911 23.051 5.940
5.250 1.336 24.253 6.230 22.841 5.501
6.179 1.584 25.543 6.377 23.538 6.071
6.198 1.589 25.539 6.586 23.648 6.021

tional time of Algorithm 2 and the traditional computing method

increase monotonically with the increase of the number of inserted
attributes and the cardinality of attribute set. According to the
sub-figure (III) and (IV), we  can obtain that the performance of
Algorithm 2 is influenced by the cardinality of object set while the
cardinality of attribute set is constant. The greater cardinality of
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ig. 6. A comparison of definition and dynamic approach versus different updatin
he  reader is referred to the web  version of this article.)

bject set, the lower computational efficiency. Furthermore, the
ub-figure (V) and (VI) imply that the computational efficiency of
ynamic approach is more efficient than the classical computing
ay still hold when the cardinality of object set and attribute are

ig enough. Based on these achievements, it is easy to get the pro-
osed mechanism always performs faster than the classical method

or computing rough approximations if some attributes be inserted
nto the original dataset. Compared with the deletion attributes,
here is difference that the proposed method is always more effi-
ient than the traditional approach in the view of computational
fficiency. To reduce the computation time and improve the effi-
iency, the studied rough approximations updating mechanisms
an be utilized into data processing of time-evolving information
ranule IvIOS.

. Conclusions

The dynamic updating rough approximations approach is an
ncremental method, which enables acquiring additional knowl-
dge from the alterative data without forgetting the prior
nowledge. It is a very effective approach to maintain knowledge

n the time-evolving environment. In this study, we  researched the
echanisms of dynamic updating upper and lower rough approx-

mations in time-evolving information granule IvOIS, where the
ranular structure is varying with the deletion and addition of some
ttributes. Two principles of dynamic updating rough approxima-
ions are established for the coarsening or refinement of granular
tructure in IvOIS, respectively. Then, a series of medical diagnosis
xamples are illustrated to explicate the studied propositions and
pdating mechanisms. According to the proposed updating rules,
e designed two algorithms for computing rough approximations

hen deleting or inserting attributes, respectively. Furthermore, a

roup of experiments are conducted based on six UCI datasets, and
he experimental results indicate that the proposed mechanisms
mprove the computational efficiency for updating rough approxi-

ations when the information granular structure varies with time.
[

s when adding attributes. (For interpretation of the references to color in the text,

In practice applications, the process of data change over time is very
manifold and complicated. So, the established approach is useful
to handle with the time-evolving granular structure that coarsen-
ing or refinement of information granule in IvIOS. In order to take
further study with massive data, we will strive to improve the com-
putational efficiency and storage efficiency of these methods in our
future work.
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[3] J. Błaszczyński, R. Słowiński, Incremental induction of decision rules from
dominance-base rough approximations, Electron. Notes Theor. Comput. Sci.
82  (2003) 40–45.

[4] C. Chan, A rough set approach to attribute generalization in data mining, Inf.
Sci. 107 (1998) 177–194.

[5] D.G. Chen, Y.Y. Yang, Z. Dong, An incremental algorithm for attribute
reduction with variable precision rough sets, Appl. Soft Comput. 45 (2016)
129–149.

[6] H. Chen, T. Li, S. Qiao, D. Ruan, A rough set based dynamic maintenance
approach for approximations in coarsening and refining attribute values, Int.
J.  Intell. Syst. 25 (2010) 1005–1026.

[7] H. Chen, T. Li, D. Ruan, Maintenance of approximations in incomplete ordered
decision systems while attribute values coarsening or refining, Knowl.-Based
Syst. 31 (2012) 140–161.

[8] H. Chen, T. Li, D. Ruan, J. Lin, C. Hu, A rough-set-based incremental approach
for  updating approximations under dynamic maintenance environments,

IEEE Trans. Knowl. Data Eng. 25 (2013) 274–284.

[9] H. Chen, T. Li, C. Luo, S. Horng, G. Wang, A rough set-based method for
updating decision rules on attribute values coarsening and refining, IEEE
Trans. Knowl. Data Eng. 26 (12) (2014) 2886–2899.

10] Y. Cheng, The incremental method for fast computing the rough fuzzy
approximations, Data Knowl. Eng. 70 (2011) 84–100.



 Comp

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Int. J. Approx. Reason. 55 (8) (2014) 1787–1804.
[60] Y. Zhang, T. Li, C. Luo, H. Chen, Incremental Updating Rough Approximations

in  Interval-valued Information Systems, Rough Sets and Knowledge
J. Yu et al. / Applied Soft

11] J.H. Dai, W.T. Wang, Q. Xu, H.W. Tian, Uncertainty measurement for
interval-valued decision systems based on extended conditional entropy,
Knowl.-Based Syst. 27 (2012) 443–450.

12] G. Facchinetti, R.G. Ricci, S. Muzzioli, Note on ranking fuzzy triangular
numbers, Int. J. Intell. Syst. 13 (1998) 613–622.
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